文章编号:1005-1538(2017)01-0057-07

LOGY Feb 2017

Vol. 29 No. 1

安徽铜陵师姑墩遗址出土原始瓷的初步分析研究

郁永彬¹,王 开²,崔剑锋¹,朔 知³,陈建立¹

(1. 北京大学考古文博学院,北京 100871; 2. 中国国家博物馆,北京 100006; 3. 安徽省文物考古研究所,安徽合肥 230061)

摘要:通过对铜陵师姑墩遗址出土的 29 件原始瓷进行的检测分析表明,师姑墩原始瓷胎为高硅低铝型,部分器物 胎体的 Fe₂O₃ 和 TiO₂ 含量较高; 釉属高温钙釉,釉中 Mn 和 P 含量相对较高,其可能由草木灰引入,部分器物釉中 含较高的 Fe₂O₃,致使釉色较深。这一结果为皖南地区先秦时期原始瓷手工业发展研究提供了新的科学依据。 关键词:铜陵;师姑墩遗址;原始瓷;科学分析

中图分类号: TQ174 文献标识码: A

DOI:10.16334/j.cnki.cn31-1652/k.2017.01.009

0 引 言

师姑墩遗址位于安徽省铜陵县钟鸣镇长龙村, 处在长江南岸冲积平原边缘一个面积较小的盆地 内,地势平坦。师姑墩遗址为典型的墩形遗址,高 1~3m 面积约7500m²。2010年3~8月 安徽省文 物考古研究所对该遗址进行了发掘,发现房址、灰 坑、小坑、沟、水井及大量柱洞 出土有陶器、原始瓷、 石器、铜制品 250 余件 基本涵盖了夏、商、西周至春 秋等时期 构建了较完整的文化序列 是认识皖南地 区文化面貌的重要材料^[1]。师姑墩遗址西周地层 中开始出现原始瓷 晚期Ⅱ段(西周中期)出土原始 瓷数量仍较少;晚期Ⅲ段(西周晚期至两周之际)出 土原始瓷的比例增加,出现了原始瓷豆;晚期Ⅳ段 (春秋早中期)出土原始瓷的比例进一步增加,原始 瓷种类开始丰富 除了豆、罐外,还大量出现碗、盘、 盂等 其为皖南地区早期原始瓷手工业发展的研究 提供了珍贵材料 具有重要学术价值。

文献[1]指出师姑墩原始瓷及印纹硬陶数量明

显多于周边其他遗址中所出,原始瓷豆、罐、碗、盘、 盂等与邻近的南陵土墩墓出土的原始瓷大体相似, 似与南方及东南原始瓷生产体系有关。然而,这批 原始瓷胎釉工艺如何?其与周邻地区出土原始瓷, 尤其是皖南地区土墩墓出土原始瓷在工艺上的联系 尤为重要,涉及该地区原始瓷手工业技术发展,以及 物料流通的问题。鉴此,本文通过对师姑墩遗址出 土原始瓷的分析,初步讨论皖南地区先秦时期原始 瓷手工业的技术特征,以期为该地区原始瓷手工业 布局、生产、组织和管理等技术与社会之间的关系提 供更多科学依据,推动相关研究的新进展。

1 样品与分析方法

1.1 样品概况

分析样品选自 2010 年安徽省文物考古研究所 对铜陵师姑墩遗址进行发掘出土的原始瓷器。师姑 墩原始瓷样品均为器物残片,分别来自该遗址的第 ②、③、④、⑤、⑥、⑦和⑧层,器形有原始瓷豆、罐、 碗、盘和盂等。本研究共取样 29 件,详见表 1。

实验号	出土号	器名	样品描述	备注
SGD01	T6(8):21	原始瓷豆	无纹饰 胎致密呈灰色 釉脱落	
SGD02	T366):12	原始瓷	无纹饰 胎致密呈灰色 釉脱落	晚期Ⅱ段(西周中期)
SGD03	T366):13	原始瓷豆	无纹饰 胎致密呈灰色 釉层较薄呈豆青色	

表1 铜陵师姑墩遗址出土原始瓷取样信息表

Table 1	Table of	proto_porcelain	samples	excavated	from	Shigudun	Site
---------	----------	-----------------	---------	-----------	------	----------	------

收稿日期: 2015-12-02; 修回日期: 2016-08-10

基金项目:国家科技支撑计划资助(2013BAK08B03) 教育部人文社会科学重点研究基地项目资助(14JJD78003)

作者简介: 郁永彬(1987—) 男 北京大学考古文博学院博士后,研究方向为科技考古 E-mail: cybin. yu@ gmail. com

通讯作者: 崔剑锋 ,E_mail: cuijianfeng@ pku. edu. cn

文物保护与考古科学

				(续表1)
实验号	出土号	器名	样品描述	备注
SGD04	T36⑦: 35	原始瓷	无纹饰 胎致密呈灰色 釉层较薄呈豆青色	
SGD05	T36⑦: 36	原始瓷	无纹饰 胎致密呈灰色 釉脱落	
SGD06	T37⑦:28	原始瓷	横线纹 胎致密呈灰色 釉层较薄呈青绿色	
SGD07	T37⑦: 29	原始瓷	无纹饰 胎致密呈深灰色 釉呈豆青色脱落严重	
SGD08	T40(5): 10	原始瓷	残片带细网格纹 胎致密呈深灰色 釉脱落	
SGD09	T40⑥: 16	原始瓷豆座	无纹饰 胎致密呈灰色 釉层较薄呈豆青色	晩期Ⅱ段(西周中期)
SGD10	T40⑥: 17	原始瓷	横线纹 胎致密呈灰色 釉层较薄呈青黑色	
SGD11	T41 (5): 30	原始瓷	无纹饰 胎致密呈深灰色 釉层较薄呈豆青色	
SGD12	T41 (5): 31	原始瓷	横线纹 胎致密呈灰色 釉层较薄 足青黄色	
SGD13	T416):16	原始瓷豆	无纹饰 胎致密呈灰色 釉层较薄呈青黑色 脱落严重	
SGD14	T7④:156	原始瓷	无纹饰 胎致密呈灰色 釉层较薄 大部分脱落严重	
SGD15	T7④:157	原始瓷	无纹饰 胎致密呈深灰色 釉脱落	
SGD16	T7④:158	原始瓷	无纹饰 胎致密呈灰色 釉脱落	
SGD17	T7④: 160	原始瓷	无纹饰 胎致密呈灰色 釉层较薄呈豆青色	
SGD18	T7④: 32	原始瓷	无纹饰 胎致密呈灰黄色 釉脱落	晚期Ⅲ段(西周晚期至
SGD19	T7④:73	原始瓷	无纹饰 胎致密呈灰色 釉层较薄呈青色	两周之际)
SGD20	T7④: 74	原始瓷	无纹饰 胎呈灰色 表面轻微风化 釉呈青绿色 开裂明显	
SGD21	T7④: 89	原始瓷	无纹饰 胎呈灰色夹杂矿物颗粒明显可见 釉层较薄呈青绿色	
SGD22	T36④: 22	原始瓷	无纹饰 胎致密呈灰色 釉脱落	
SGD23	T36④: 24	原始瓷	无纹饰 胎致密呈灰色 釉脱落	
SGD24	T37②:41	原始瓷	无纹饰 胎致密呈灰色 釉脱落	
SGD25	T40③: 18	原始瓷	无纹饰 胎较厚呈灰色 釉脱落	
SGD26	T41③: 38	原始瓷	无纹饰 胎致密呈灰色 釉脱落 表面粘附有匣钵	晚期Ⅳ段(春秋早中
SGD27	T41③: 39	原始瓷	无纹饰 胎致密呈灰色 釉脱落	期)
SGD28	T7②:14	原始瓷	无纹饰 胎致密呈灰色 釉层较薄呈豆青色	
SGD29	T7③: 8	原始瓷	无纹饰 胎呈灰白色 表面轻微风化 釉脱落	

注: 所取样品均为田野考古发掘出土器物残片。

1.2 分析方法

样品测试所用仪器为北京大学考古文博学院 的激光剥蚀电感耦合等离子体发射光谱仪(LA-ICP-AES)。实验仪器由美国 LEEMAN-LABS 公司的 Prodigy型 ICP 和 NEW-WAVE 公司的 UP266-MARCO 型激光器组成。原始瓷器样品由激光剥蚀进样,电 感耦合等离子体发射光谱仪(ICP-AES)测量。测试 结果由标准样品进行数据校正:胎体成分使用标 样为国家土壤标准 GSS2,GSS4,GSS5,GSS6;釉成 分使用标样为美国康宁玻璃博物馆标准 Corning-B,C,D。胎体成分测试选择样品断面部位,釉层 测试选择釉层较厚的部位,测试前样品使用酒精 擦洗,每个样品读数2~3次,求平均值。 选择有代表性的样品进行显微观察、物理性能 和物相分析等。利用北京大学考古文博学院科技考 古实验室的日立高新台式扫描电子显微镜 TM3030 和尼康 Shuttle pix P-MFSC 数码显微镜分别对原始 瓷样品胎釉结合层、釉面气泡以及釉面开裂情况等 进行观察和分析。

2 分析结果

本工作共对 29 件师姑墩原始瓷样本化学组成 进行了分析,获取 29 件原始瓷胎的化学组成数据, 结果见表 2。师姑墩原始瓷多数釉层较薄,仅获取 11 件原始瓷釉的化学组成数据,结果见表 3。

表 2 铜陵帅姑墩遗址出土原始瓮胎化字组

		Tabl	e 2 Ch	emical o	composit	ion of th	ne proto	_procelai	n body	excavate	ed from S	Shigudun Site (%)
编号	Na_2O	MgO	Al_2O_3	SiO_2	K_2O	CaO	${\rm TiO}_2$	$\mathrm{Fe}_2\mathrm{O}_3$	MnO_2	P_2O_5	总量	分子式
T7④:160	0.65	0.56	19. 58	73.43	2.12	0.39	0. 59	2.41	0.02	0.03	99. 79	$0.38R_xO_y \cdot Al_2O_3 \cdot 6.37Al_2O_3$
T7④: 74	0.55	0.60	19.45	73.70	1.84	0.35	0.65	2.40	0.02	0.21	99.76	$0.36R_xO_y \bullet Al_2O_3 \bullet 6.44Al_2O_3$

(%)

												(续表2)
编号	Na_2O	MgO	$\mathrm{Al}_2\mathrm{O}_3$	SiO_2	K_2O	CaO	${ m TiO}_2$	$\mathrm{Fe}_2\mathrm{O}_3$	MnO_2	P_2O_5	总量	分子式
T7④: 32	0.54	0.89	19.26	73.14	1.93	0.40	1.09	2.34	0.02	0.08	99.70	$0.42R_xO_y \bullet Al_2O_3 \bullet 6.46Al_2O_3$
T7④: 157	0.84	0.76	20.79	70.81	2.27	0.35	1.06	2.86	0.03	0.01	99.78	$0.42R_xO_y \bullet Al_2O_3 \bullet 5.79Al_2O_3$
T40⑤:10	0.86	0.56	19.14	72.87	2.15	0.36	0.96	2.79	0.02	0.02	99.73	$0.42R_xO_y \bullet Al_2O_3 \bullet 6.47Al_2O_3$
T7④: 89	1.89	0.17	17.69	71.77	5.94	0.29	0.26	1.21	0.02	_	99.24	$0.65R_xO_y \bullet Al_2O_3 \bullet 6.90Al_2O_3$
T37⑦: 28	0.44	0.53	16.46	76.93	2.00	0.23	0.97	2.18	0.03	0.02	99.78	$0.40R_{x}O_{y} \bullet Al_{2}O_{3} \bullet 7.94Al_{2}O_{3}$
T37②:41	1.01	0.77	20.53	70.70	2.32	0.43	0.93	2.93	0.03	0.06	99.70	$0.45R_xO_y \bullet Al_2O_3 \bullet 5.86Al_2O_3$
T7④:156	0.55	0.57	19.35	73.28	2.08	0.24	0.93	2.75	0.03	0.01	99.77	$0.37R_xO_y \cdot Al_2O_3 \cdot 6.44Al_2O_3$
T7③: 8	0.27	0.91	23.19	66.12	1.76	0.63	1.20	4.29	0.07	1.26	99.69	$0.43R_xO_y \bullet Al_2O_3 \bullet 4.85Al_2O_3$
T7④: 158	0.44	0.54	19.84	73.67	1.81	0.26	0.91	2.27	0.02	0.02	99.79	$0.32R_xO_y \cdot Al_2O_3 \cdot 6.31Al_2O_3$
T7②:14	0.70	0.55	18.33	74.09	2.24	0.46	0.84	2.47	0.02	0.03	99.74	$0.43R_xO_y \bullet Al_2O_3 \bullet 6.87Al_2O_3$
T41(5): 30	1.16	0.44	20.10	72.36	2.10	0.42	0.85	2.35	0.03	_	99.81	$0.40R_xO_y \bullet Al_2O_3 \bullet 6.12Al_2O_3$
T36④: 24	1.57	0.50	20.70	70.95	2.37	0.66	0.81	2.24	0.02	—	99.82	$0.46R_xO_y \bullet Al_2O_3 \bullet 5.83Al_2O_3$
T41③: 39	0.86	0.59	20.97	71.50	2.16	0.38	0.89	2.38	0.03	0.01	99.76	$0.38R_xO_y \cdot Al_2O_3 \cdot 5.80Al_2O_3$
T41 (5): 31	0.75	0.54	20.01	72.59	2.19	0.27	1.09	2.28	0.03	—	99.75	$0.37R_xO_y \cdot Al_2O_3 \cdot 6.17Al_2O_3$
T40③: 18	0.32	0.56	12.32	81.95	1.64	0.32	0.93	1.68	0.02	0.06	99.79	$0.48R_xO_y \bullet Al_2O_3 \bullet 11.31Al_2O_3$
T36④: 22	1.50	0.51	20.52	70.91	2.39	0.54	1.02	2.37	0.02	—	99.78	$0.45 \mathrm{R_xO_y} \bullet \mathrm{Al_2O_3} \bullet 5.88 \mathrm{Al_2O_3}$
T366): 13	1.17	0.38	20.48	72.00	2.37	0.34	0.77	2.30	0.02	—	99.83	$0.39R_xO_y \cdot Al_2O_3 \cdot 5.98Al_2O_3$
T7④: 73	0.66	0.45	15.39	78.35	1.85	0.34	0.62	2.11	0.02	0.02	99.81	$0.42R_xO_y \bullet Al_2O_3 \bullet 8.66Al_2O_3$
T36⑦: 35	1.31	0.38	22.98	69.17	2.52	0.36	0.82	2.22	0.02	0.01	99.78	$0.36R_xO_y \cdot Al_2O_3 \cdot 5.12Al_2O_3$
T406): 17	1.09	0.49	20.37	72.05	2.33	0.38	0.69	2.40	0.03	—	99.83	$0.40R_xO_y \bullet Al_2O_3 \bullet 6.01Al_2O_3$
T36⑦: 36	0.69	0.65	20.47	71.60	2.22	0.39	0.88	2.80	0.06	—	99.76	$0.40R_xO_y \bullet Al_2O_3 \bullet 5.95Al_2O_3$
T6®:21	0.75	0.64	22.76	68.55	2.54	0.34	1.30	2.77	0.03	0.07	99.74	$0.38R_xO_y \cdot Al_2O_3 \cdot 5.12Al_2O_3$
T37⑦: 29	1.39	0.39	22.23	68.73	2.77	0.43	0.75	3.05	0.05	0.01	99.79	$0.42R_xO_y \bullet Al_2O_3 \bullet 5.26Al_2O_3$
T416:16	0.76	0.50	19.15	73.57	1.87	0.27	1.07	2.58	0.02	0.02	99.81	$0.38R_xO_y \bullet Al_2O_3 \bullet 6.53Al_2O_3$
T36⑥: 12	0.83	0.53	21.50	71.01	1.90	0.32	0.91	2.80	0.02	0.01	99.81	$0.35R_xO_y \bullet Al_2O_3 \bullet 5.61Al_2O_3$
T41③: 38	0.79	0.65	21.70	69.79	2.21	0.35	0.96	3.22	0.03	0.03	99.73	$0.39R_xO_y \cdot Al_2O_3 \cdot 5.47Al_2O_3$
T406):16	0.86	0.68	20.66	70.98	2.23	0.44	0.87	2.98	0.05	0.01	99.75	$0.42R_{x}O_{y} \cdot Al_{2}O_{3} \cdot 5.84Al_{2}O_{3}$
均值	0.87	0.56	19.86	72.30	2.28	0.38	0.88	2.53	0.03	0.10	99.78	$0.41 R_x O_y \bullet Al_2 O_3 \bullet 6.19 Al_2 O_3$
标准差	0.39	0.15	2.27	3.03	0.75	0.10	0.20	0.53	0.01	0.27	_	_

注: SiO_2 的质量分数为 100% 减去主要已测元素氧化物质量分数。表 3 同。

表3 铜陵师姑墩遗址出土原始瓷釉化学组成

 $Table \ 3 \quad {\rm Chemical\ composition\ of\ the\ proto-procelain\ glaze\ excavated\ from\ Shigudun\ Site}$

编号	Na_2O	MgO	$\mathrm{Al}_2\mathrm{O}_3$	SiO_2	K_2O	CaO	${\rm TiO}_2$	$\mathrm{Fe}_2\mathrm{O}_3$	MnO_2	$\mathrm{P}_2\mathrm{O}_5$	总量	分子式
T41(5): 30	1.05	2.73	14.82	56.05	2.44	17.32	0.71	2.80	0.22	1.25	99.39	$3.11 R_x O_y \bullet Al_2 O_3 \bullet 6.43 Al_2 O_3$
T416:16	0.75	3.68	12.98	58.83	1.60	15.99	0.89	2.23	0.36	2.08	99.39	$3.48R_xO_y \bullet Al_2O_3 \bullet 7.71Al_2O_3$
T37⑦: 29	1.34	4.16	13.83	52.94	2.65	16.31	0.78	3.06	0.58	3.65	99.30	$3.69 \mathrm{R_xO_y} \bullet \mathrm{Al_2O_3} \bullet 6.51 \mathrm{Al_2O_3}$
T406): 16	1.13	4.69	12.13	49.05	3.63	20.61	1.02	2.95	0.32	3.76	99.27	$5.00R_xO_y \bullet Al_2O_3 \bullet 6.87Al_2O_3$
T406): 17	1.46	3.19	15.79	58.32	3.87	10.88	0.79	3.28	0.27	1.67	99.53	$2.44R_xO_y \bullet Al_2O_3 \bullet 6.28Al_2O_3$
T36⑦: 35	1.31	4.49	14.64	49.98	3.07	18.85	0.66	2.36	0.78	3.05	99.19	$3.84R_xO_y \bullet Al_2O_3 \bullet 5.80Al_2O_3$
T7④:73	0.61	3.82	14.19	58.97	2.20	12.91	0.82	3.04	0.60	2.11	99.26	$2.90R_xO_y \cdot Al_2O_3 \cdot 7.07Al_2O_3$
T366): 13	1.21	2.45	15.33	58.19	2.64	15.39	0.81	2.06	0.16	1.36	99.58	$2.74R_xO_y \bullet Al_2O_3 \bullet 6.45Al_2O_3$
T7④: 89	0.52	2.61	19.32	49.65	3.08	8.77	1.85	6.64	0.17	6.29	98.89	$1.89R_xO_y \bullet Al_2O_3 \bullet 4.37Al_2O_3$
T7④: 74	0.56	3.53	11.04	57.76	3.48	19.72	0.75	1.85	0.31	0.53	99.51	$4.70R_xO_y \bullet Al_2O_3 \bullet 8.90Al_2O_3$
T7④: 160	0.75	2.34	12.59	64.06	3.51	12.72	0.66	2.05	0.13	0.79	99.61	$2.90R_xO_y \cdot Al_2O_3 \cdot 8.65Al_2O_3$
均值	0.97	3.43	14.24	55.80	2.92	15.41	0.89	2.94	0.35	2.41	99.36	$3.23R_xO_y \bullet Al_2O_3 \bullet 6.66Al_2O_3$
标准差	0.34	0.83	2.22	4.78	0.69	3.75	0.34	1.32	0.21	1.68	—	—

检测结果表明 师姑墩原始瓷胎的 Al_2O_3 质量分 数在 12. 32% ~23. 19% 浮动 SiO_2 质量分数变化范围 为 66. 12% ~81. 95% R_xO_y 质量分数在 5. 53% ~ 10. 39% 波动 ,其主要由 $K_2O_xFe_2O_3$ 和 TiO₂ 组成。 其中 , K_2O 质量分数在 1. 64% ~5. 94% , Fe_2O_3 质量 分数在 1. 21% ~4. 29% , TiO_2 质量分数在 0. 26% ~ 1. 30%。除原始瓷 T4O③: 18 样品较特殊外 ,其他样 品 SiO_2/Al_2O_3 的摩尔比在 4. 85 ~8. 66 之间 , $R_xO_y/$ Al_2O_3 的摩尔比在 0. 32 ~0. 65 之间。

检测结果表明,师姑墩原始瓷釉中 Al_2O_3 质 量分数在 11.04% ~ 19.32% ,SiO, 质量分数变 化范围为 49.05% ~ 64.06%。 瓷釉中 Al₂O₃ 和 SiO,含量均较其胎中的含量明显降低,而原始瓷 釉中 CaO 的质量分数均较高,在 8.77% ~ 20.61%,其明显高于原始瓷胎中的含量。釉中 Fe₂O₃ 质量分数在 1.85% ~ 6.64% ,其是瓷釉的 主要着色元素,因此在还原气氛下釉色以青色居 多。MgO和K,O的含量也较高,其中MgO的质 量分数在 2.34% ~ 4.69% ,K,O 的质量分数在 1.60%~3.87%。P2O5的质量分数在0.53%~ 6.29% ,其明显高于原始瓷胎的含量。总体上, 师姑 墩原始瓷熔剂含量较高, R_xO_x 的质量分数 在 22.97% ~ 38.09% ,R,O,/Al,O, 的摩尔比在 1.89~5.00 之间 SiO₂/Al₂O₃ 的摩尔比在 4.37~ 8.90 之间。

3 讨 论

3.1 胎料工艺

师姑墩遗址晚期地层不同时段原始瓷可能使用 相同原料烧制。由表2可以看出,师姑墩原始瓷胎 中 Al₂O₃ 质量分数均值为 19.86% (SiO₂ 质量分数 均值为 72.30%。已分析过的山西、河南、河北、江 西、浙江以及陕西省等地区的原始瓷样品胎中 Al₂O₃ 质量分数一般约为 15% ,SiO₂ 质量分数在 70%~80%之间^[2],可见师姑墩原始瓷胎料主要元 素含量基本在我国大部分地区出土原始瓷胎料的变 化范围内。进一步根据样品化学组成的胎式(即氧 化物含量的分子摩尔比),可以发现表2中除样本 T37⑦:28、T40③:18 和 T7④:73 的 SiO₂/Al₂O₃ 较高 外(分别为 7.94、11.31 和 8.66),其他样本的 SiO₂/ Al₂O₃ 集中在 4.85~6.90 之间,所有样本的 R_xO_y/ Al₂O₃ 约在 0.32~0.65 之间。与我国其他地区原始 瓷胎式(一般在 0.5~0.7,SiO₂/Al₂O₃一般在 5~ 11^[3]) 基本保持在同样水平的变化范围内; 师姑 墩遗址晚期地层出土原始瓷胎主次量元素因子

分析散点图 1 表明,晚期 II 段、III 段和 IV 段原始 瓷落在一个较大的区域内,这种组成上的接近说 明师姑墩遗址不同地层出土的绝大部分原始瓷 可能使用相同原料烧制。由于大部分器物胎体 化学组成以及 SiO₂/Al₂O₃ 比值有一定程度的波 动,其可能是因制瓷工匠对原料处理加工不够精 细所致;另外,部分原始瓷胎的烧结程度较低,瓷 化程度低,胎中含有较多颗粒状矿物和气泡(图 2、图 3),其可能也是造成胎体成分波动的重要 原因。师姑墩原始瓷胎原料以高硅低铝为特征, 与我国南方盛产的瓷石组成相似^[2],皖南地区的 祁门、钟鸣和繁昌一带有较多瓷石^[4],这些都有 可能成为原始瓷烧制的原料。

从陶瓷发展的角度看,我国南方大部分地区由 陶到瓷表现在化学组成上的变化就是由高 SiO₂、低 Al₂O₃ 和高熔剂 R_xO_y (主要是 Fe₂O₃)向低 SiO₂、高 Al₂O₃ 和低熔剂 R_xO_y (也主要是 Fe₂O₃)的变化^[2], 这样的原料能够承受更高的烧成温度。师姑墩原 始瓷胎熔剂 R_xO_y 的质量分数在 5.53% ~10.39% 之间变化(表 2),主要由 $K_2O_xFe_2O_3$ 和 TiO₂的含 量所贡献;但 Fe₂O₃和 TiO₂的总体含量较低,均值 分别为 2.53% 和 0.88%,是原始瓷胎的主要着色 元素。这种含量级别及其含量的相对稳定性都说 明了师姑墩原始瓷样品的原料,应是在可供选择 的前提下,陶工们有意识地选择了一些含铁与含 钛量相对较低的原料,使得烧制后的胎体呈灰色 或灰白色,仅个别样品的 Fe₂O₃和 TiO₂含量较高, 胎体呈较深的灰色。

图 2 师姑墩原始瓷胎体和釉面显微图像 Fig. 2 Microscopic images of typical bubbles and cracks of proto-porcelain glazes

图 3 师姑墩原始瓷胎釉结合部位显微图像 Fig. 3 BSE and microscopic images of combined body and glaze layers of typical proto-porcelain

3.2 制釉技术

从师姑墩遗址出土原始瓷釉的主次量元素组成 来看(表3),其应属我国古代典型的高温钙釉^[5]。 师姑墩遗址不同地层出土原始瓷釉中 CaO 的质量 分数均较高,均值为15.41%,明显高于其釉中碱金 属氧化物的含量,且釉中 MgO 和 K,O 质量分数也较 高 均值分别为 3.43% 和 2.92% ,着色元素 Fe₂O₃、 TiO, 的均值分别为 2.94% 和 0.89%, 可见师姑墩原 始瓷釉是主要以 CaO、MgO、K,O 以及 Fe,O, 等为熔 剂的高钙釉。原始瓷釉是一种高温釉 ,大致可分为 两类,第一类含有较高的熔剂,特别是 CaO 的含量 较高 而 Fe₂O₃ 含量一般都较低 注要以 Ca_xK 和 Mg 等为熔剂的青色高钙釉 透明度较高; 第二类的特点 是 CaO 含量较低,主要熔剂是 Fe,O,和 K,O 釉呈现 深酱色或黑色^[2] 遮盖能力较强。师姑墩墓地出土 的原始瓷釉以青釉居多,少数青釉青中带黄,系 Fe₂O₃和TiO₂还原不充分所致。

总体来看 ,师姑墩晚期 Ⅱ 和 Ⅲ 段出土原始瓷釉 中熔剂 R₄O₄的质量分数均较高,均值为29.32%。 师姑墩原始瓷釉以 CaO(MgO)为主要熔剂,釉中 Mn、P的质量分数相对较高,其中 MnO。的均值为 0.35% (0.22% ~ 0.78%), P2O5 的均值为 2.41% (0.53%~6.29%),而一般高钙矿物如石灰石等的 使用不会提高瓷釉中的 Mn 和 P 含量(两者之和一 般小于 0.1%)^[6]。实际上,中国南方基本都用柴烧 窑 草木灰量多而且易得 样品釉中的高钙则很可能 是由含高 Mn 和 P 的草木灰所引入^[7],因此师姑墩 原始瓷釉可能引入了草木灰。从外观上看,师姑墩 遗址出土原始瓷大都釉层较薄,并且均匀性较差,釉 中存在大小不等的气泡 胎釉结合度不好 大部分器 物胎釉结合部有气泡;釉面开裂严重 脱落现象较为 普遍 这些特点反映了施釉技术的原始性 均有可能 是导致师姑墩原始瓷釉化学组成测试结果波动性的 原因。

4 结 论

通过 LA-ICP-AES 对铜陵师姑墩遗址出土原始 瓷胎釉化学组成进行了分析。结果表明,师姑墩遗 址不同地层出土的原始瓷胎主次量元素含量差异不 大,胎料以高硅低铝为特征,这种高硅低铝的特征同 中国南方盛产的瓷石组成相似;部分器物胎体的 Fe_2O_3 和 TiO_2 含量较高,致使瓷胎呈灰白色或更深 的灰色; 师姑墩原始瓷釉属中国古代典型的高温钙 釉 釉以 CaO 为主要熔剂 釉中 Mn 和 P 含量相对较 高,很可能是由含高 Mn 和 P 的草木灰所引入; 部分 器物釉中 Fe_2O_3 含量较高,釉的颜色较深,呈褐色。

参考文献:

[1] 安徽省文物考古研究所. 安徽铜陵县师姑墩遗址发掘简报[J].
 考古 2013(6):3-21.
 Institute of Cultural Relics and Archaeology of Anhui Province. Ex-

cavation report on the Shigudun site , Tongling County , Anhui Province [J]. Archeology , 2013(6): 3-21.

[2] 李家治. 中国科学技术史: 陶瓷卷[M]. 北京: 科学出版社, 1998:77-104.

LI Jia_zhi. A history of science and technology in China—ceramic volume [M]. Beijing: Science Press, 1998: 77-104.

- [3] 吴 隽 吴军明,李其江,等. 横岭山先秦墓葬群出土陶瓷的系统研究[J]. 中国科学 E 辑: 技术科学,2009,39(6):1074-1080.
 WU Juan, WU Jun_ming, LI Qi_jiang, et al. Scientific studies on pottery and proto_porcelain from Group of Graves in Hengling shan [J]. Sci China Series E: Technol Sci, 2009 39(6):1074-1080.
- [4] 杨玉璋 涨居中 李广宁 等. 安徽繁昌窑遗址发掘与研究[M]. 北京: 中国社会科学出版社 2006:144-146.
 YANG Yu_zhang , ZHANG Ju_zhong , LI Guang_ning , et al. Excavation and research on Fanchang kiln site , Anhui Province [M]. Beijing: China Social Sciences Press , 2006:144-146.
- [5] 陈尧成 涨筱薇. 夏商原始瓷和瓷釉起源研究[M]//郭景坤.
 ISAC'02 论文集. 上海: 上海科学技术文献出版社,2002: 32-40.

CHEN Yao_cheng , ZHANG Xiao_wei. Study on the proto-procelain in Xia_Shang Period and the origin of porcelain glaze [M]//GUO Jing_kun. ISAC'02. Shanghai: Shanghai Scientific and Technical Literature Publishers , 2002: 32-40.

- [6] 吴 隽 涨茂林,吴军明,等.中国陶瓷釉的多元化起源与初步发展探析[J].中国科学 E 辑:技术科学 2011(2):223-228.
 WU Juan, ZHANG Mao-lin, WU Jun-ming, et al. Study on the diversification origins and primary development of Chinese porcelain glaze [J]. Sci China Series E: Technol Sci, 2011(2):223-228.
- [7] 张福康. 中国传统高温釉的起源[C]//中国科学院上海硅酸盐 研究所编. 中国古陶瓷研究 北京: 科学出版社 ,1987: 41-46. ZHANG Fu-kang. The origin of Chinese traditional high-temperature glazes[C]// Shanghai Institute of Ceramics, Chinese Academy of Sciences. The research on China ancient ceramics. Beijing: Science Press, 1987: 41-46.

Preliminary scientific analysis of the proto-porcelain excavated from Shigudun site , Tongling County , Anhui Province

YU Yong-bin¹, WANG Kai², CUI Jian-feng¹, SHUO Zhi³, CHEN Jian-li¹

(1. School of Archaeology and Museology, Peking University, Beijing 100871, China; 2. National Museum of China, Beijing 100006, China;
 3. Institute of Cultural Relics and Archaeology of Anhui Province, Hefei 230061, China)

Abstract: Twenty_nine proto_porcelain samples excavated from the Shigudun site in Tongling, Anhui Province, were analyzed in terms of their body and glaze chemical compositions. The results show that the bodies of the proto_porcelain samples has a high silicon but low aluminum content, which could have come from a porcelain raw material that is abundant in southern Anhui. Some porcelain bodies have high Fe_2O_3 and TiO_2 contents. The glazes are typical calcium glazes made at high temperature. The glaze has a high concentration of Mn and P, which could have come from wood and plant ash. Some glazes have high Fe_2O_3 content, which leads to a dark color. This research provides scientific information for the study of proto_porcelain in the South Anhui area.

Key words: Tongling County; Shigudun site; Proto-porcelain; Scientific analysis

(责任编辑 马江丽)